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Abstract— Real-world applications require light-weight,
energy-efficient, fully autonomous robots. Yet, increasing auton-
omy is oftentimes synonymous with escalating computational
requirements. It might thus be desirable to offload intensive
computation—not only sensing and planning, but also low-
level whole-body control—to remote servers in order to reduce
on-board computational needs. Fifth Generation (5G) wireless
cellular technology, with its low latency and high bandwidth
capabilities, has the potential to unlock cloud-based high per-
formance control of complex robots. However, state-of-the-art
control algorithms for legged robots can only tolerate very low
control delays, which even ultra-low latency 5G edge computing
can sometimes fail to achieve. In this work, we investigate the
problem of cloud-based whole-body control of legged robots
over a 5G link. We propose a novel approach that consists
of a standard optimization-based controller on the network
edge and a local linear, approximately optimal controller
that significantly reduces on-board computational needs while
increasing robustness to delay and possible loss of commu-
nication. Simulation experiments on humanoid balancing and
walking tasks that includes a realistic 5G communication model
demonstrate significant improvement of the reliability of robot
locomotion under jitter and delays likely to be experienced in
5G wireless links.

I. INTRODUCTION

Legged robots are favored in many scenarios such as
disaster rescue and advanced manufacturing due to their high
mobility [1]. However, to cope with dynamic, ever-changing
real-world environment, robots need to be vested with fast
and reliable sensing, planning and control capabilities, which
all require large amount of computation. However, powerful
on-board computing increases the weight of the robot and its
energy consumption, and consequently affects the autonomy
of the robot. For example, ANYmal, one of the most ad-
vanced commercially available quadruped robot, carries 3 kg
of batteries of about 650 W h energy [2] while the high-
end Nvidia Titan X consumes more than 250 W of power,
significantly impacting battery life if such computational
power was embedded on the robot.

The idea of offloading computations to the cloud is not
novel [3] and has attracted a lot of attention for tasks that
do not require real-time performance. Nevertheless, cloud
computing remains elusive for latency-critical tasks as lim-
ited bandwidth and high latency of wireless communication
preclude the transmission of rich multi-modal sensor data to
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Fig. 1: Cloud-based robotic edge whole-body control over a
5G mmWave wireless link.

the cloud and the remote execution of fast millisecond scale
feedback control loops.

5G cellular network edge computing technology [4] in
conjunction with massive broadband links in the millimeter
wave (mmWave) bands [5], [6] offer unprecedented access to
high bandwidth and low latency communication that could
render edge-based real-time control a reality. In traditional
wide area networks, packets are typically routed through
a centralized gateway before accessing any cloud services.
This routing can cause considerable delay—in excess of
40 ms in current 4G LTE networks [7]. 5G edge computing,
i.e. when the computers are placed at the edge of the network,
close to the wireless base stations, dramatically reduces the
delay in the core network. At the same time, the mmWave
bands offer vast amounts of spectrum that enable ultra-
fast communication in the airlink enabling delays of 1–
2 ms, an order of magnitude lower delays than current 4G
links operating in traditional spectrum bands, and within the
requirements of state of the art torque control methods [8].

However, a key challenge with communication in the
mmWave bands is that the signals are highly susceptible to
blockage by common materials in the environment including
buildings, people, and foliage [9]–[12]. Robots with metallic
parts can also block mmWave signals. As a result, links
can intermittently experience outage causing delays, jitter
and packet loss. These outages are not permanent as signals
can be re-routed or communication can fallback to the 4G
network but nevertheless create significant delays. Although
robots may be able to detect such circumstances and adapt
their behavior accordingly using models of mmWave signal
propagation [13], such adaptation of the plan inevitably
introduces a nonnegligible time window during which the
robot needs to operate under increased communication delays
or absence of communication with the network edge.

State-of-the-art whole-body controllers for legged robots
are computationally expensive as they typically require the
resolution of quadratic programs at a control frequency of
500–1000 Hz [14]. For example, in [8], one core of a CPU
was entirely dedicated to the computation of the control
commands. While local computational requirements would
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significantly decrease by offloading whole-body control to
the edge, communication loss or delays are an important
challenge as these feedback controllers are very susceptible
to delays to maintain proper operating conditions and resist
unexpected disturbances. This is especially important for
legged robots that need to walk in uncertain environments.

In this work, we propose and study the first edge-based
whole-body controller over a 5G communication link capable
of handling communication loss and delays as depicted in
Fig. 1. Our approach provides an efficient local control
algorithm to enhance the performance of a purely remote
controller in face of delays. The algorithm separates the
computationally expensive part of the control problem and
approximates it with a linear feedback controller based
on previously obtained information from the external, full
capacity controller. Together with the local information mea-
sured by the robot, it creates an approximately optimal con-
trol command to reduce the violation of task constraints and
thus achieve the tasks in the presence of delays. We present
a complete simulation environment including a realistic 5G
communication model and rigid-body dynamics. Extensive
simulations demonstrate the capabilities of the approach for
bipedal balancing and walking tasks in disaster response and
manufacturing environments.

II. BACKGROUND

A. Task-space inverse dynamics

In recent years, optimization-based task-space inverse dy-
namics [15]–[18] has become ubiquitous for the control of
legged robots as it provides a simple yet principled way
of formulating task-space inverse dynamics problems as
Quadratic Programs (QPs); and more importantly, allows
more flexible task descriptions using inequality constraints
(e.g. to impose actuation limits or friction cone constraints).

Denoting the robot configuration as q ∈ SE(3)×Rj , the
joint torque as τ ∈ Rj , where j is the number of the joints,
the dynamics of a robot in rigid contact can be written as

Mq̈ + h = STτ + JT
c f (1a)

Jcq̈ + J̇cq̇ = 0 , (1b)

where M is the generalized inertia matrix; h is a vector of
generalized forces including gravity, centrifugal and Coriolis
forces; ST maps actuated joints torques to the generalized
coordinates; f denotes the contact forces, and Jc is the
Jacobian of the contact points.

A task function s(q) maps the robot configuration to the
task space, and a desired closed-loop task-space controller
is given by s̈∗. For example, s(t) can be the Center of
Mass (CoM) position; and s̈∗ would be the desired CoM
acceleration computed from a desired closed-loop CoM
dynamics. Task-space inverse dynamics aims to find q̈, τ, f
that satisfy physical consistency constraints while achieving
several tasks as well as possible, i.e. getting s̈ − s̈∗ as
small as possible in the least-square sense. Note that τ is
uniquely determined by q̈, f from (1a) and that the dynamic
consistency equation can be reduced to a 6D equation [17]
by considering only the unactuated part of the dynamics. The

problem can therefore be formulated as a QP solving for the
stacked variable y = (q̈, f) ∈ Rn

minimize
y=(q̈,f)

1

2

∑
i

ωi

∥∥∥Jiq̈ + J̇iq̇ − s̈∗i
∥∥∥2 (2a)

subject to Ay ≤ b , (2b)

where ωi > 0 weights the relative importance of each task
and Ji = ∂si

∂q is the Jacobian of task i that satisfies ṡi = Jiq̇.
Eq. (2b) summarizes all equality and inequality constraints
by stacking K constraints aTky ≤ bk, ∀k = 0, 1, . . . ,K into
the matrix A and the vector b, including the dynamic and
contact constraints equations (1). Note that in this section we
only describe kinematic tasks depending on q̈ for simplicity
but force tasks depending on f can be similarly formulated
and all results presented in the following trivially carry over
to this case.

B. Active-set method

We solve the constrained QP (2) using an active-set
method. Given y, a constraint aTky ≤ bk is called active
when aTky = bk. The active set A contains thus all equality
constraints and the inequality constraints that are satisfied
with equality, i.e. aTky = bk, ∀k ∈ A. Starting from an initial
guess of the active-set, an equality constrained problem

minimize
y=(q̈,f)

1

2

∑
i

ωi

∥∥∥Jiq̈ + J̇iq̇ − s̈∗i
∥∥∥2 (3a)

subject to Āy = b̄ , (3b)

is solved at each iteration of the active-set search. Ā and b̄
represent the constraints in the current iterate of the active
set. If at the current solution y∗ to (3), there are inequality
constraints being violated, one of them will be added (acti-
vated) to the active set. Otherwise, an inequality constraint
that prevents the solution from going closer to the optimum
will be removed (deactivated). The algorithm converges if no
inactive violated constraints remain and no active constraints
need to be deactivated. At this point the optimal active-set
Aopt is found, and we denote by Āopt, b̄opt the stacked matrix
and vector of the constraints aTky = bk, ∀k ∈ Aopt.

The solution y∗ to (3) is found by the Nullspace
method [19]. A structured formulation is given by the
publicly available solver in [14]: here the solution

y∗ = A‡b (4)

is found with the hierarchical inverse A‡. A and b denote
the stacked matrix and the stacked vector

A =
[
ĀT w1J

T
1 . . .

]T
(5)

b =
[
b̄T w1(−J̇1q̇ + s̈∗1)T . . .

]T
, (6)

respectively. Note that A‡ is only given implicitly when
computing y∗ by a forward recursion using the Hierarchical
Complete Orthogonal Decomposition (HCOD) of A. This is
implied throughout the paper when using the expression A‡.
The computation of the HCOD requires O(2n3) operations,
while the complexity of the forward recursion is O(n2)
with n being the number of decision variables. This scheme



is potentially applicable to hierarchical problems with any
number of priority levels.

In the following, A‡opt is associated to the HCOD of the
optimal active set Āopt, b̄opt found for (3).

C. 5G Cloud Edge Computing

Our goal is to study robotic control in scenarios where
some of the computation is offloaded to an edge server
over a 5G mmWave wireless link. The basic model is
shown in Fig. 1. The robot is equipped with a wireless 5G
mobile device, called the User Equipment (UE), which is
functionally similar to a smartphone. The UE communicates
wirelessly to a base station over a mmWave channel. In
5G terminology, the base station is called the gNB [20],
[21]. The mmWave bands are a key component of the 5G
standard which use high bandwidth signals transmitted in
narrow electronically steerable beams. These signals offer
massive peak rates (> 1 Gbit/s) with very low latency (1–
2 ms) over the airlink.

The latency over the airlink (the wireless connection
between the UE and gNB) is not the only component of
delay. In a traditional 4G cellular network, data must be
typically routed to centralized gateway before it can access
any third-party cloud services [22], [23]. This architecture
can add considerable delay—often in excess of 40 ms [7].
To enable low end-to-end delay, 5G networks can combine a
low latency airlink with mobile edge cloud architecture [4].
As shown in Fig. 1, data from the base stations can be routed
to a mobile edge server that can host edge cloud services that
have much lower delay to the base stations—potentially as
low as a few milliseconds, depending on the deployment. As
per the latest 5G system architecture [24] defined by 3GPP
the 5G Core Network selects a User Plane Function (UPF)
close to the UE and executes the traffic steering from the
UPF to the local Data Network via a N6 interface.

The basic problem we consider in this work is how to
partition the control between the local computation on the
robot and remote computations on the edge server. The key
challenge is that, while 5G mmWave links offer very high
peak rates, the signals are intermittent due to blockage as
discussed in the introduction [9]–[12]. Thus, we wish to find
distributed control policies that can exploit low-latency cloud
resources when the wireless links are available, but are robust
during blockage and outage events.

III. LOCALLY ASSISTED REMOTE WHOLE-BODY
CONTROL

A. Structure of the QP solution

The QP solution (4) has several interesting properties:
First, the matrix A‡opt depends only on the task Jacobians Ji
and the optimal active set normal Āopt. The matrix Āopt will
change as a function of q and q̇, but this change—similarly to
the Jacobians—will be rather slow. Thus, the matrix A‡opt will
not change too much in a short period of time as long as the
optimal active set Aopt remains the same. This implies that
a delayed A‡opt will still approximately enforce all the active
constraints if bopt is updated sufficiently fast. Fortunately,
bopt only depends on the generalized forces h, the robot

state q, q̇, the task reference s̈∗, the task Jacobian Ji, and
its time derivative J̇i. These quantities can all be stored
and updated efficiently without querying a remote server,
as forward kinematics and Jacobian computations can be
done in O(n), where n is the robot’s number of Degrees
of Freedom (DoFs). Constructing bopt from these quantities
also only requires basic matrix operations that a low-power
on-board computer can easily execute. Notably, all the error
feedback terms are contained in bopt which therefore renders
it the most important quantity for control, while the matrix
A‡opt can be seen as a projector that changes slowly.

These properties naturally partition the optimal control
command into two parts:

1) the computation of A‡opt which is expensive but less
susceptible to delays; and

2) the construction of bopt which contains the error feed-
back terms and is latency-critical but can be done
efficiently.

In this paper, we propose to offload the active-set search
and the computation of A‡opt to the remote server, while
updating bopt locally on the robot. If the robot fails to recover
the latest decomposition A‡opt due to communication delays
or packet loss, we approximate it with the most recently
received one. This still enables us to perform feedback con-
trol for all the tasks and to approximately enforce previously
active inequality constraints.

B. Control scheme

These insights together give rise to the following control
scheme illustrated in Fig. 2. At any time t, the robot
maintains a cache of the decomposition Â

‡
opt and the optimal

active set Âopt from the most recently successful communi-
cation with the remote server, and the robot measures its
state q, q̇ and constructs the vector bopt; then it sends q, q̇
to the remote controller to solve the full QP problem (2).
Meanwhile, the robot computes the approximate command

ŷ = Â
‡
optbopt .

Note that the active-set search is not continued according to
the changed right hand side bopt as it is potentially expensive
if a lot of active-set iterations are necessary. Instead, the last
found optimal active-set Âopt is used when computing the
approximate solution.

At time t + d, the robot receives a new decomposition
A‡opt and the new optimal active set Aopt from the remote
controller, where the delay d depends on the communication
channel. The local cache is updated accordingly. Note that
this solution may not have been computed based on the state
q, q̇ measured at time t due to the previous delays.

Given the period of the control loop T (e.g. T = 1 ms),
we can set a desired threshold 0 < d∗ < T such that the
robot applies a control command

y =

{
A‡optbopt if d < d∗

ŷ otherwise .
(7)

At time t+ T , the process described above repeats.



y = ̂A‡
opt bopt

 if time ≤ t + d*

A‡
opt, 𝒜opt

time local remote

t + d

̂A‡
opt, �̂�opt

q, ·q

 if time  ≥ t + d*

t

y = A‡
opt bopt

̂A‡
opt ← A‡

opt �̂�opt ← 𝒜opt

Fig. 2: Communication and computation flow between the
robot and the edge computer in the proposed control scheme.

C. Handling contact switches
The control scheme described above relies on the as-

sumption that the optimal active set does not change when
the communication delay occurs. This assumption is plau-
sible for tasks where no contact is broken or established
when blocking events occur, such as balancing without
external disturbances. However, for contact-switching tasks
such as walking, this assumption becomes problematic for
two reasons 1) the contact switches introduce very different
constraints and thus different optimal active sets; and 2) even
in the same contact mode, when the robot approaches the
contact switch, the optimal active set changes more fre-
quently due to the friction cone constraints being activated.

To resolve the first issue, we pre-compute the solution to
the new contact mode shortly before the contact switch by
imposing the new contact constraints on the current robot
state. This gives a valid approximation for low-speed loco-
motion because the state of the robot q, q̇ shortly before and
after the contact switch is similar. The solution differs mostly
due to the different contact forces and the corresponding
constraints. Therefore, if the contact switch does happen and
we have not yet obtained the corresponding optimal solution
from the remote server, we can use the pre-computed solution
and approximately enforce the new constraints. On the
other hand, for highly dynamic locomotion, the generalized
velocity q̇ may change significantly across contact switches;
to tackle this issue, a more sophisticated prediction of the
state q, q̇ is required, which we leave for future work.

While this pre-computation can in principle be performed
on the edge computer, it has to be completed before the
contact switch occurs. However, it is difficult to have a delay
upper bound in the 5G network and this upper bound might
anyway be too large compared to the timing of one step.
In this case, we additionally use the on-board computer to
perform the pre-computation. As we assume that the on-
board computer has very limited computational capabilities,
the QP needs to be started several control cycles prior to the
switch. The delay introduced by the on-board computation
can be considered upper-bounded by a constant in practice
as will be shown in the simulation experiments.

The second issue can also be mitigated in a similar

manner—we can solve the full QP problem (2) on-board
as well when the contact switch is happening, as the optimal
active set is more likely to be similar in a shorter period.

In our implementation, in the time window of length
100 ms centered at the planned contact switch time, we
perform all computation—including the full QP, the local
controller, and the pre-computation (once per contact switch)
of the next contact mode—locally, i.e. on the on-board
computer. Note, in this case we choose to solve the full
QP every 5 ms due to limited computational capacity. In
addition, the pre-computation will be initiated 10 ms before
the planned contact switch time. The aforementioned choice
of numbers is reasonable for our simulated low-power on-
board computer, as later simulation experiments will show
that it takes less than 3 ms to solve the full QP locally in the
worst case. We do still query the remote server to solve the
full QP at the same time, so that we get better approximation
when the communication with the server is faster than the on-
board computation. The increase in on-board computational
complexity is minimal as full QPs are only solved on-board
in a short period of time around contact switches at a much
lower speed than the control frequency.

It is worth noting that the way we handle contact switches
as described above heavily relies on the accurate knowledge
of when and how the contact switch will happen, resulting
in lack of robustness of our approach to unexpected con-
tacts. However, a principled handling of unexpected contact
switches is still an open problem for optimization-based
task-space inverse dynamics controllers even without control
delays. Addressing this issue therefore goes beyond the scope
of this paper and we leave the question of robustness to
unexpected contact changes to future research.

IV. SIMULATION EXPERIMENTS

In the following simulation experiments, we compare our
locally assisted remote control scheme (LA) with a purely
remote control scheme (PR). PR sends the measured robot
state to the remote controller to compute the optimal solution.
If the robot does not recover the latest command from
the remote controller, executes the most recently received
command. The goal of these experiments is to demonstrate
that our approach significantly improves robustness to delays
with limited computational overhead.

The simulation experiments consist of robot balancing and
walking tasks under two different delay settings: constant
delays and simulated stochastic delays in 5G networks.
The simulations were conducted on an Intel Xeon CPU at
3.7 GHz. The on-board computer of the robot is emulated
by restricting the computation to a single core of the CPU at
1.2 GHz. We simulate the 37-DoF humanoid robot Romeo
and use Pinocchio [25] for rigid body dynamics computation.

A. Robot tasks

Our control scheme is evaluated on two typical tasks for
legged robots, namely balancing and walking.

1) Balancing The task is achieved by stabilizing the CoM
of the robot while maintaining rigid contacts between
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Fig. 3: Illustration of Line of Sight and Multipath of the
signal for non-blocking and blocking scenarios respectively

the feet and the ground. To prevent slipping, we con-
strain the ground reaction forces to stay inside the
friction cones approximated with 4-sided pyramids. In
addition, we minimize an error between the current
joint positions and a desired upright posture in the
whole-body joint space to resolve remaining torque
redundancies. We inject Gaussian noise with a noise
level σ = 1×10−2 to the joint measurements and apply
an external push of 100 N for 0.2 s at the robot base.

2) Walking For this task, we first generate offline a desired
CoM trajectory and a footstep plan using a linear
inverted pendulum model [26]. The motion of the swing
foot is synthesized by interpolating splines from one
step location to another and each step takes 0.8 s. The
robot alternates between single support phase (one foot
on the ground) and short double support phases of 5 ms
(both feet on the ground) by following the desired CoM
trajectory and foot motion. In the double support phase,
both feet have to obey rigid contact constraints and
friction cone constraints, while in the single support
phase, only the support foot needs to respect those
two constraints. The measurement noise level is σ =
1× 10−3 in this task.

The task objectives and constraints are formulated by
TSID [27] and then solved as a constrained QP by the
solver [14] as described in Sec. II-B.

B. Network and wireless modeling

The communication between the server and the robot
over the 5G channel is simulated using ns-3 [28], a
widely-used open-source network simulator. We use a
state-of-the-art 5G mmWave module in ns-3 to simu-
late the wireless link and network stack [29] used in
several works [30], [31]. This module includes detailed
models for the wireless channel, wireless communication
stack, core network and networking protocols. We use
MmWave3GPPPropogationLossModel to configure the
communication channel. Note that at the time of writing, real
5G base stations were not available.

Our key task is to analyze the robustness due to blockage.
To model this, we follow [30], [31] where several moving
obstacles are placed in the environment and blockage is
computed via ray tracing. We assume fixed number of
blockers in the environment and fully digital beamforming
to expedite beam search during blocking events.

Fig. 3b illustrates the blocking scenario in the simulation.
The blockages move at a speed of 2 m/s. Table I details

(a) Smart factory (b) Burning building

Fig. 4: An instance of the delay profile in each of the
simulated scenarios.

TABLE I: ns-3 simulation parameters

Parameters Smart factory Burning building

Channel model UMi-StreetCanyon InH-OfficeMixed
Maximal distance between

100m 30m
the access point and robot
Bandwidth 1GHz
Number of blockers 4
Transport layer protocol UDP
Maximal uplink packet size 1 kB
Maximal downlink packet size 40 kB
Transmission frequency 1 kHz

the parameters used in the ns-3 simulation. The type of
blockages and the distance between the access point and
the robot is dependent on the simulation scenarios. We
consider two scenarios relevant for legged robot applications
(parameters for both scenarios can be found in [29]):

1) Smart factory This scenario models the case where
robots conduct manufacturing tasks autonomously or
with humans. The access point is placed in the middle
of the factory; the robot or the blockages can move
around it. Solid metal and stone blockages are used in
this scenario. It is characterized by infrequent blocking
events as the factory environment is well structured.
However, delays introduced by blocking events can
be as high as 389 ms as potential blockages such as
containers and manufacturing components are large in
size.

2) Burning building This is a mission critical scenario,
where a robot is sent inside a burning building to
analyze and report back possible threats. The access
point is placed on a window while the robot is mobile
inside. The blockages in this case are in close proximity
of each other and are smaller in size. The type of
blockages used are wooden or solid metal. This results
in a delay profile characterized by frequent but lower
delays; the maximal delay in this scenario does not
exceed 91 ms.

We also note that the simulated delays do not reflect the
possible damage to the access point in the burning building
scenario.

In both scenarios above, we have assumed a delay from
the base station to the mobile edge server of 1 ms, a realistic
value for future 5G edge deployments. At the transport layer,
we have assumed UDP instead of TCP. TCP ensures packet
delivery using re-transmissions whereas UDP transmits only



once and does not wait for any acknowledgement or ensure
packet delivery. Since our robotics automation loop discards
any packet that does not meet the specified time constraints,
re-transmission would only lead to excessive bandwidth
consumption and cause more delay.

Fig. 4 shows an instance of the delay profile in each of
the scenarios under these assumptions. We generated 100
different delay profiles for each scenario by randomizing the
initial positions of the robot and the blockages. The delay
profiles are then introduced into the robotics simulator to
assess the effect of the delay.

C. Metrics
We examine the control performance by measuring the

average CoM tracking error and the average violation of the
rigid contact constraint

1

N

N∑
n=0

‖p− pd‖ and
1

N

N∑
n=0

∥∥∥Jcq̈ + J̇cq̇
∥∥∥ ,

where N is the total number of the simulation steps; p and pd
denotes the actual and desired CoM position; the time indices
are dropped for notational simplicity. Due to symmetry, we
only report the constraint violation of the left foot for the
balancing task; for the walking task, we report the constraint
violation of the support foot.

Finally, whether a robot falls or not is used as a qualitative
metric to determine the failure or success of a task execution.

D. Results
a) Constant delays: Table II and Table III report the

performance of PR and LA in the balancing task and the
walking task respectively. The infinity symbol ∞ in the
tables indicates that the robot fell. The last row of the tables
shows the maximal tolerable delay for LA to achieve the
task without the robot falling. Recall that we require on-
board computation for the walking task—here we simply
assume that the on-board computation causes the same
respective constant delays; for instance, a 25 ms constant
delay means that we solve the full QPs onboard every
25 ms. Different constant delays can be interpreted as the
usage of different on-board computational capacities. Across
all delay levels, LA had lower tracking error and lower
constraint violation than PR. The maximal tolerable constant
delay was significantly increased by incorporating the local
controller in both the balancing task and the walking task.
An important implication of this result is that our approach
can also be used to address the delay caused by limited on-
board computational resources if the on-board computation
scheme is properly scheduled to produce bounded delays,
enabling purely local optimization-based whole-body control
on a low-power on-board computer. It is thus interesting for
future research to investigate the control performance and
power consumption of such schemes compared to our locally
assisted remote control scheme.

b) Simulated delays with blockage: As described in
Sec. IV-B, we simulated two different scenarios and gener-
ated 100 delay profiles for each scenario. For the balancing
task, both the naive remote controller PR and LA managed to

TABLE II: Balancing task performance of PR and LA under
various constant delays. The last row shows the maximal
delay LA can tolerate.

Delays CoM error [cm] Constraint violation [m/s2]
PR LA PR LA

0ms 1.30 1.30 0.00 0.00
10ms 1.35 1.34 2.18 0.04
20ms 1.43 1.38 2.17 0.04
30ms 1.63 1.46 2.21 0.05
40ms 2.21 1.57 2.40 0.05
50ms ∞ 1.73 ∞ 0.06
90ms ∞ 2.53 ∞ 0.16

TABLE III: Walking task performance of PR and LA under
various constant delays. The last row shows the maximal
delay LA can tolerate.

Delays CoM error [cm] Constraint violation [m/s2]
PR LA PR LA

0ms 1.68 1.68 0.00 0.00
3ms 4.52 1.68 5.21 0.02
5ms ∞ 1.71 ∞ 0.03
25ms ∞ 1.89 ∞ 0.41

keep the robot in balance with high success rate. However,
even though PR was able to complete the task, LA was still
advantageous in the sense that it reduced the CoM tracking
error and the constraint violation. As shown in Fig. 5, the
constraint violation was significantly reduced except when
the robot was being pushed.

For the walking task, we simulated on-board full QP
computation as described in Sec. III-C by restricting the
computation on a single core of the CPU at 1.2 GHz within
a time window of length 100 ms centered at the planned
contact switch time. In addition, the pre-computation for
contact switch was initiated 10 ms before the contact switch.
While real hardware implementation will be required to
obtain a better estimate of the delay upper bound, 10 ms
is a reasonable value as we will show later that the full QP
for the tasks can be solved in less than 3 ms on a single
core of the CPU at 1.2 GHz. The experiments have shown
that the naive approach PR could not prevent the robot from
falling on the ground in either of the scenarios, while LA
completed the walking task with a lower success rate in the
smart factory scenario. This suggests that higher delay peaks,
even with less frequent occurrence, is more damaging to the
control performance than frequent delay peaks of smaller
magnitude. This is particularly relevant when there is a large
change in the optimal active set, for example when changing
contacts.

Fig. 6 illustrates the control performance of LA in one
instance of the smart factory scenario. It can be seen that
there is a correlation between higher delays and larger
constraint violation; especially around 0.5 s and 4.2 s the
two delay peaks have caused very large constraint violation.
On the other hand, while the pre-computation of the contact
switch caused large discrepancy between the cached and the
true optimal active set, the control performance was not
significantly deteriorated due to the effective lower delay
permitted by the on-board computation of full QPs.



TABLE IV: Task performance of PR and LA in the two
scenarios. Performance metrics are computed from only
successful trials.

Scenario Metrics PR LA
Balance Walk Balance Walk

Factory
Success rate 98% 0% 99% 85%

CoM error [cm] 2.60 - 1.46 2.19
Constraint violation [m/s2 ] 0.77 - 0.03 0.84

Building
Success rate 100% 0% 100% 100%

CoM error [cm] 1.39 - 1.37 1.83
Constraint violation [m/s2 ] 0.40 - 0.03 0.05

(a) PR control scheme (b) LA control scheme

Fig. 5: Typical control performance of PR and LA for the
balancing task in the smart factory scenario. Red shaded area
indicates the time window where we apply a push.

TABLE V: Computation time in milliseconds of the local
controller and the full QP for the walking task on a single
core of the CPU at 1.2 GHz and 3.7 GHz respectively.

CPU frequency Average Worst
QP Local QP Local

3.7GHz 0.36 0.09 0.70 0.22
1.2GHz 1.21 0.30 2.39 0.76

c) Robustness to active set discrepancy: Our approach
assumes that the optimal active set does not change during
network delays or communication loss. However, it is in-
evitable that the cached active set may differ from the true
one when the delays are too high and the active set rapidly
changes, for example, when the robot switches contact or
receives an unexpected push. While we have shown that our
approach enabled the robot to complete the task under such
circumstances, we further demonstrate empirically how the
discrepancy between the cached optimal active set and the
true one, hence the cardinality |(Aopt ∪ Âopt)\(Aopt ∩ Âopt)|,
affects the control performance in Table VI. Recall that all
the equality constraints belong to the active set and the
only inequality constraints we imposed are friction cone
constraints, hence the change in the optimal active set is
always caused by the contact force reaching the friction
cone limit. For the walking task, the increased number of
different constraints in the active set neither suggests higher
CoM tracking error nor higher constraint violation. Indeed,
the control performance deteriorates the most when there
are about 5 different active constraints. For the balancing
task on the other hand, the control performance worsens

TABLE VI: Performance of LA in the burning building
scenario when the cached optimal active set differs from the
true one. The cardinality of active set discrepancy is defined
as |(Aopt ∪ Âopt)\(Aopt ∩ Âopt)|.

Cardinality of CoM error [cm] Constraint violation [m/s2]
active set discrepancy Walk Balance Walk Balance

0 1.78 0.01 0.05 0.02
1 1.91 0.05 0.06 0.19
2 1.88 0.05 0.06 0.15
3 1.90 0.06 0.08 0.13
4 2.06 0.06 0.10 0.12
5 2.06 0.06 0.19 0.14
6 1.92 0.06 0.24 0.12
7 1.54 0.06 0.09 0.12
8 1.45 0.06 0.08 0.12
9 1.38 0.06 0.06 0.11

10 1.44 0.06 0.17 0.10
11 1.40 0.06 0.18 0.10
12 1.47 - 0.19 -
13 1.52 - 0.18 -
14 1.41 - 0.19 -

as long as there is any different active constraints—here
we note that the source of the discrepancy in the optimal
active set is different for the two tasks considered: for the
balancing task, the cached optimal active set differs from the
true one when the external push was applied; in the walking
task, discrepancy occurs when the robot approaches contact
switch, most notably when the pre-computed solution for the
next contact mode was used.

d) Computation time: We report in Table V the average
and worst-case computation time of 1) solving the full
QP (2); and 2) constructing the local controller (4) for the
walking task in the burning building scenario. The computa-
tion time was obtained when the computation was restricted
on a single core of the CPU at 1.2 GHz and 3.7 GHz respec-
tively to emulate a low-power on-board computer required by
LA and a high-performance computer by traditional purely
local optimization-based whole body inverse dynamics con-
troller. It can be seen that the local controller computation
takes significantly less time than solving a full QP. This is
not surprising, as the time complexity of the QP is dominated
by the HCOD of cubic complexity O(2n3) where n is the
number of decision variables; in our case, n = 61. In the case
of changes in the active-set, the decomposition is updated in
approximately O(2n2) operations. On the other hand, the
local controller computation is only dominated by a matrix-
vector multiplication of time complexity O(n2) and can be
parallelized if needed.

V. CONCLUSION

In this work, we have presented the first edge-based whole-
body control algorithm over a 5G wireless link subject
to unpredictable realistic delays. The proposed algorithm
complements the remote controller on the network edge to
robustly complete the task when there is a temporary unex-
pected communication delay. Simulation results have shown
that the algorithm significantly improves control performance
for balancing and walking tasks under both constant and
stochastic delays. The proposed local controller is much
more efficient than solving a full QP, such that it can be



Fig. 6: Typical delay profile and control performance of LA (walking in the smart factory scenario). Measurement noise is
removed in the plot to better illustrate the relationship between delays and performance metrics.

executed on a low-power on-board computer with limited
computational resources. We do emphasize that our current
framework requires solving full QPs onboard when switching
contacts. Although this is a benign requirement, it would
be an interesting future research direction to explore the
possibilities of handling contact switches when delay occurs,
without solving the full QP locally. For example, we can
monitor and predict the channel quality online and only make
contact switch when we are confident in the connectivity.
Another option would be computing offline the QP solution
in an explicit MPC manner so that it can be stored locally
on the robot and be inquired when needed.
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